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Abstract 

This paper introduces Swarm Queens, a Swarm 

Intelligence approach to the N-Queens problem. ERA is 

the current best Multiagent Systems solution to this 

classic Constraint Satisfaction Problem. Our algorithm 

improves upon ERA in terms of both time and space 

complexity. In addition, Swarm Queens has a simpler 

design and delivers much more consistent time 

performance from run to run. We discuss the similarities 

and differences between these two algorithms, showing 

how the design decisions we made led to better 

performance. Our experiment demonstrates that 

consistent global results can be achieved with non-

deterministic local behavior in Multiagent Systems. 

Furthermore, Swarm Queens exhibits features that may 

be useful in designing a better general MAS algorithm for 

solving Constraint Satisfaction Problems. 

1  Introduction 

Swarm Intelligence (SI) is a biologically inspired 

Multiagent Systems (MAS) technique that involves simple 

agents working on small parts of a large problem. Work in 

SI began when scientists noticed how intellectually 

primitive organisms like ants and bees work together in 

colonies to accomplish very complex tasks. Swarm 

Intelligence algorithms attempt to solve problems in the 

world of computer science by creating teams of simple 

agents that are guided by nature-influenced rules. Swarm 

agents are only given a local perspective of their 

environment and are allowed to work for some time. 

Ultimately, a global solution is reached through the 

interaction of these agents (Bonabeau, Dorigo, & 

Theraulaz 1999). Many other MAS approaches involve 

complex agents, direct communication, simultaneous 

actions, and even centralized interference with agents as 

they work. These features increase the complexity of a 

MAS algorithm and are not always necessary to obtain the 

best performance. On the other hand, SI attempts to solve 

problems by using simple agent designs that are consistent 

with the behavior of primitive biological organisms such as 

ants. 

 We applied SI to the classic Constraint Satisfaction 

Problem (CSP), N-Queens, to see if a simpler MAS 

approach could compete with existing MAS solutions. 

After comparative testing, we found that our SI approach is 

better than the leading MAS solution, ERA, in terms of 

time complexity, space complexity, and consistency. 

Swarm Queens finds a solution to N-Queens in quadratic 

time, having just linear space complexity. Furthermore, 

Swarm Queens has minimal time deviation from run to run 

for problems of the same size. 

 In this paper, Section 2 discusses SI and previous 

solutions to N-Queens, including ERA. In Section 3, we 

explain the rationale behind our MAS synchronization 

method and agent design. In Section 4, we describe the 

Swarm Queens algorithm in detail. Section 5 discusses 

comparative data we collected, the time complexity of 

Swarm Queens, and other results. Finally, Section 6 

provides a summary and discusses implications for future 

work. 

2  Background 

Swarm Intelligence algorithms have been applied to 

various problems since their introduction by Dorigo, 

Maniezzo, and Colorni (1991). These applications include 

the Traveling Salesman Problem, Quadratic Assignment 

Problem, tweaking neural networks, and scheduling. Two 

of the most popular SI approaches are the Ant System 

(Maniezzo, Gambardella, & De Luigi 2004) and Particle 

Swarm Optimization (Kennedy, Eberhart, & Shi 2001). 

Other SI approaches exist, though much of SI work 

involves applying variants of these two algorithms to 

different problems. 

 N-Queens is a Constraint Satisfaction Problem that is 

solved by finding values for each variable such that every 



constraint is satisfied. Specifically, a solution is found by 

placing N queens on an N-by-N board such that they do 

not threaten each other. Although a fast algorithm has been 

found that solves N-Queens in linear time (Sosic & Gu 

1994), this problem is still commonly used as a benchmark 

for CSP algorithms (Liu, Han, & Tang 2002). 

 Han, Liu, and Qingsheng (1999) designed the first 

MAS solution to N-Queens, introducing the idea of 

viewing queens as agents. These agents are bound to a 

single row on the N-by-N board and can move only along 

that row. Their approach is quite complex, involving 

heterogeneous agents with different behaviors, energy 

levels, agent death, and evolution of agent behaviors. This 

algorithm was improved upon by another MAS approach 

called ERA (Environment, Reactive rules, and Agents). 

This approach has homogeneous agents, no agent death or 

energy levels, and no evolutionary component. Besides 

being much simpler, the ERA algorithm has better 

performance than its predecessor (Liu, Han, & Tang 2002).  

 ERA works by having queen-agents act simultaneously 

to position themselves in their rows. Thus, during a single 

ERA round, each of the N queens moves to a square in its 

row to reduce the number of threats it receives from the 

other queens. The number of threats from all queens at 

each square on the N-by-N board is stored in a matrix that 

is updated after each move. There are three different 

behaviors from which a queen-agent picks randomly when 

making an action: least-move, better-move, and random-

move (Liu, Han, & Tang 2002).  

 ERA has O(n
2
) space complexity to store the N-by-N 

matrix of threats. A single round takes O(n
2
) time and there 

can be any number of such rounds as N grows larger. 

Memory requirements limited tests to problems of up to 

size N= 7000 (Liu, Han, & Tang 2002). ERA is an 

inconsistent algorithm, taking very different amounts of 

time to run for problems of the same size when initialized 

with different random seeds (Basharu, Ahriz, & Arana 

2003). 

 The ERA framework is general, in that its usefulness is 

not restricted to N-Queens. This MAS technique has been 

successfully applied to other CSPs like graph coloring and 

the Propositional Satisfiability Problem with minimal 

changes to the basic algorithm (Liu, Han, & Tang 2002; 

Liu, Jin, & Han 2002). 

3  Design Decisions and Motivations 

3.1   Agent Synchronization: Sequential Movement 

Recent MAS literature argues for simultaneous actions by 

agents, where agents work in parallel without a turn-based 

ordering of when each agent can act (Weyns & Holvoet 

2003). The rationale behind this argument is that it is 

always best to have as little central control as possible. 

However, we suspect that this reasoning does not apply to 

all domains where Multiagent Systems are used. In fact, 

we believe that many problems, such as N-Queens, can be 

more easily solved by a MAS if its agents move 

sequentially instead of simultaneously.  

 For example, every ERA queen-agent looks at the 

current state of the board and picks a place to move to 

without knowing how the other agents will move. This 

leads to unnecessary conflict when two or more queens 

move to squares in the same column because they each saw 

that column as unthreatened. These agents ignored better 

moves elsewhere because they did not know how the 

others would act. Thus, agents working in parallel are at a 

disadvantage because they have to make decisions based 

on incomplete information.  

 Another problem with the parallel actions of ERA 

occurs when all but a few queen-agents have found squares 

where they are not threatened. In this situation, every 

queen (including the ones that have already found an 

unthreatened square) is still forced to make a move, 

wasting computational time. Finally, MAS algorithms with 

sequential moves are simpler and easier to understand 

because one can trace the agent actions one at a time as the 

problem is being solved. 

 Consequently, we chose to implement a simple 

sequential ordering for our approach. Each queen-agent in 

Swarm Queens is assigned to a row on the N-by-N board, 

as in ERA. The queen in row 0 goes first, followed by the 

queen in row 1, and so on. When all N Queens have made 

a move, the queen in row 0 moves again and the cycle 

continues until a solution is found. 

3.2  Agent Design: Random-Weight Move 

An SI agent should be as simple as possible, so we decided 

to have the same single movement behavior for all agents. 

For this behavior, we selected the mechanism used by Ant 

System agents in the classic Swarm Intelligence approach 

to the TSP (Dorigo, Maniezzo, & Colorni 1991). We call 

this behavior a Random-Weight move because it involves 

making a random decision from among several choices 

with different probabilities of being selected.  
 In Swarm Queens, a Random-Weight move consists of 

a queen choosing a square to move to in its row, where all 

N squares have a chance of being selected. Squares with 

fewer threats from other queens have a higher probability 

of being chosen than those with more threats. This 

behavior encourages agents to frequently move to least 

threatened squares. However, agents also sometimes make 

locally sub-optimal exploration moves to more threatened 

squares, which help the MAS escape from local optima. 

The specific formula for calculating the probability of 

moving to each square we borrowed from Dorigo, 

Maniezzo, and Colorni (1991), and it is described in 

Section 4.2. 
 Because our agents have only one behavior, we did not 

have to tweak the probabilities determining how often each 

behavior should be selected by an agent, as had to be done 



by Liu, Han, and Tang (2002) and Liu, Jin, and Han 

(2002). In addition, we thought it was important to 

incorporate random local behavior in our approach to test 

Basharu, Ahriz, and Arana (2003)’s hypothesis that 

randomness in local behavior results in inconsistent global 

performance from run to run. Thus, our approach makes 

use of randomness, just like ERA, to show that it is 

possible to obtain consistent results with a locally non-

deterministic MAS algorithm.  

4  The Swarm Queens Algorithm 

4.1  The Main Idea is Similar to ERA 

As in ERA, we assign an agent to each of the N queens and 

place one such queen-agent in every row of the N-by-N 

board. Initially, the queens are placed at random squares in 

their rows. The queen-agents have a local perspective, in 

that they can only look at the squares in their own row 

when deciding about where to move. Agents can 

communicate indirectly with others by notifying the 

squares that they threaten. Thus, each square holds the 

number of threats from all the queens that threaten it. 

When it is an agent’s turn to move, it looks at all the 

squares in its row, and consequently, has some idea about 

the positions of other agents. As the agents make moves, 

they position themselves such that there are fewer and 

fewer queens threatening each other until there are no more 

threats (Liu, Han, & Tang 2002). 

4.2  The Random-Weight Move 

As described in Section 3.1, the queens take turns acting in 

a pre-defined sequential order. When it is an agent’s turn, it 

can make a Random-Weight move that consists of:  

 1) reading the threat values of all N squares in its row 

 2) making a random-weighted decision about where to go 

 3) going to the selected square 

 To decide where to go, agents calculate the probability 

of moving to every square in their row. The square an 

agent currently occupies is treated exactly like the other N–

1 choices, and a queen can decide to go to this square (i.e. 

stay where it is). Just as Ant System agents are more likely 

to move to the least distant nodes (Dorigo, Maniezzo, & 

Colorni 1991), queen-agents are more likely to move to 

squares with the fewest threats. During its turn, an agent 

calculates the probability of moving to square j (Pj) for  0 ≤ 

j ≤ N–1. The formula for calculating Pj is the same one 

used by ant-agents, except that queen-agents look at threats 

instead of distances and pheromones (the latter is a second 

factor Ant System agents have to consider): 
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 The numerator is the “Safety” value that represents 

how safe from threats a queen will be at square j. The 

number of threats at square j is inverted, since a square 

having more threats should result in a lower Safety value. 

The denominator is the sum of the Safety values of all the 

squares in the agent’s row. Therefore, Pj is a ratio 

comparing the Safety of the current square with the 

combined Safeties of all squares in that row. The sum of all 

Pj for  0 ≤ j ≤ N–1  is always equal to 1. Note that a queen 

contributes 1 threat to each square in its row, so the 

number of threats at any square is always greater than zero. 

 The constant C is the exploration vs. exploitation 

constant. Higher values of C correspond to more 

exploitation, as agents are more likely to choose squares 

that have fewer threats and are Safer. On the other hand, 

lowering the value for C results in a higher likelihood of 

exploration moves. Exploration moves occur when agents 

move to squares that have more threats than others, and 

thus, are less Safe. Such moves are necessary to move the 

MAS away from local optima. Thus, the formula for 

finding Pj ensures that agents make locally sub-optimal 

moves to help the algorithm find the global optimal 

solution. Empirical testing of different C values for a wide 

range of N showed that C between 12 and 20 yield better 

results than other values. We set C equal to 16 when 

obtaining the data provided in this paper. 

4.3  Efficient Storage of Threat Values 

It is not necessary to store an entire N-by-N array of threat 

numbers to remember the number of threats at each square. 

A queen threatens squares in 8 directions that correspond 

to 4 “threat lines”: row, column, upper-left diagonal, and 

upper-right diagonal. It is wasteful for queens making a 

threat to write on every square along those threat lines, 

which takes linear time. An improvement can be made by 

allowing a queen to inform an entire line that it is being 

threatened, not the individual squares that make up that 

line. Then, a queen-agent only has to inform the 4 threat 

lines passing through the square it is in about being 

threatened. 
 For example, queen Q1 in square (2, 1) threatens the 

2
nd

 column, as shown in Figure 1. It must add 1 to the 

number of threats along that column. This can be 

accomplished in constant time by incrementing a single 

element of an array of columns. Incrementing the number 

of threats along a single column has the same effect as 

incrementing the number of threats in all the squares of 

that column. Q1 also threatens the 1
st
 row and two 



diagonals; the number of threats along those threat lines 

can be incremented similarly. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Threat Lines from Queen Q1 at (2,1) for a problem of 

size N=4. Q1 contributes 1 threat to all the squares through which 

its threat lines pass. 

 

 Thus, we store only 4 arrays corresponding to the 4 

types of lines passing through the board. This requires 

linear storage space, which is an improvement over the 

O(n
2
) space complexity of ERA (Liu, Han, & Tang 2002). 

Reading and writing threats to lines instead of squares does 

not affect how decision-making is done by agents. They 

still look at the number of threats at each square in their 

row, regardless of how that number is stored.  

4.4  Queen Movement 

When a queen-agent decides to leave one square to move 

to another, all the squares it previously threatened have to 

be informed that they are no longer threatened. 

Additionally, the squares the queen will threaten from its 

new square have to be informed that there is an additional 

threat. In Swarm Queens, only the 4 threat lines passing 

through the square a queen is leaving have to be informed, 

which takes constant time. Similarly, the lines it threatens 

from the new square can be informed in constant time. 

Therefore, incrementing or decrementing threat values in 

all the squares a queen threatens (or used to threaten) takes 

constant time. Consequently, moving a queen takes 

constant time. This is an improvement over the linear time 

ERA takes to move a single queen (Liu, Han, & Tang 

2002).  

4.5  The Happy Lazy Principle 

ERA is a good approximating algorithm (Basharu, Ahriz, 

& Arana 2003; Liu, Han, & Tang 2002), which means it 

converges quickly to a state where all but a few of the 

queens are not threatened by others. However, these 

“happy” queens keep making moves, most of the time 

resulting in their staying in the same square. These 

unnecessary moves take up valuable processing cycles for 

the rest of the time the algorithm runs.  

 We experimented with the idea of having happy queens 

act less frequently since they are satisfied with their 

position. Surprisingly, testing showed that a global solution 

can be found if happy queens are “lazy” and do not move 

at all. We call this the Happy Lazy Principle, which 

dictates that happy queens skip their turn. Therefore, only 

unhappy queens may move. This principle makes sense 

because it is unnatural for agents that are completely 

satisfied to want to move somewhere else as long as they 

are happy. This does not cause the MAS to become stuck 

at local optima because unhappy agents can still indirectly 

communicate with happy ones. Specifically, unhappy 

queens may threaten the squares of happy queens to force 

them to move. 

 As a result, we must make a distinction between two 

types of turns in Swarm Queens: skipped and actual turns. 

A skipped turn occurs when an agent only checks that the 

number of threats in its current square is 1 and is done (the 

only threat comes from itself). An actual turn occurs when 

a queen makes a Random-Weight move after realizing that 

it is threatened by one or more other queens. A skipped 

turn takes constant time, which is insignificant compared 

to the linear time an actual turn takes. For a problem of 

size N=1000, Swarm Queens took an average of 14,429 

total turns. However, only an average 696 of those turns 

were actual turns that took up significant processing time. 

This means that the Happy Lazy Principle decreased the 

time to find a solution by  20
696

429,14
≈ times for this 

problem size. Testing for problems of other sizes yielded 

similar gains in performance (see Section 5 for more data). 

 Besides making our algorithm faster, the Happy Lazy 

Principle is also responsible for making Swarm Queens 

significantly more consistent. The standard deviation of the 

total number of turns Swarm Queens takes is as high as 

60% of the average for some N. This means that the turn 

number varies wildly. However, the standard deviation of 

the actual number of turns is only 3.30% of the average for 

N=1000. This shows that there is little difference in the 

number of actual turns from run to run. As N grows larger, 

the number of actual turns becomes even more consistent, 

with the standard deviation equal to 0.25% of the average 

for N=70,000. The time our algorithm takes is directly 

related to the number of actual turns, so the running time is 

consistent as a result (see Section 5 for data on time 

consistency). 

4.6  Finding a Solution with Swarm Queens 

Swarm Queens does not take O(n) time to check for a 

solution like ERA (Liu, Han, & Tang 2002). Instead, a 

single variable (Num_Skipped) is kept to record how many 

queens have skipped their turn in a row. When 
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Num_Skipped = N, it means that all N queens are happy, 

so a solution has been found.  
 A high-level view of the Swarm Queens algorithm is 

given in Figure 2. Initially, it assigns a queen to each of the 

N rows, giving it a random x-coordinate. Then, the 

algorithm iterates through all the queens sequentially, 

allowing happy queens to skip their turn according to the 

Happy Lazy Principle. If a queen is not happy, it always 

makes a Random Weight move and resets the 

Num_Skipped variable to 0. Checking for a solution takes 

constant time, done by comparing Num_Skipped to N. 

Figure 2: The Swarm Queens Algorithm 

5  Results 

5.1  Comparative Testing 
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Figure 3: Graph of Time vs. N for ERA and Swarm Queens 

 

To compare the performance of ERA and Swarm Queens, 

we ran both algorithms on the same machine. All of our 

tests were conducted on an Intel Pentium III 695Mhz 

computer with 128 MB of RAM, running Windows XP. 

Figure 3 shows the average times of both algorithms from 

100 runs on each problem of size up to N= 7,000. As N 

grows, the time ERA takes to run increases much more 

rapidly than Swarm Queens’ time. Thus, our approach is a 

faster algorithm than ERA.  

 As in earlier tests (Basharu, Ahriz, & Arana 2003), the 

Standard Deviation (SD) of the ERA runs in our 

experiments was quite high. For example, ERA has SD of  

709.72s with an average time of 700.72s for N=7000. By 

comparison, Swarm Queens had a SD of only 1.30s with 

an average time of 16.9s for the same problem size. Swarm 

Queens’ SD is a much smaller percentage of its average, 

and therefore, it is a more consistent algorithm from run to 

run. 

5.2  Time Complexity of Swarm Queens 

When making a Random-Weight move during an actual 

turn, an agent reads the threat values of all N squares in its 

row, makes a random-weighted decision about where to 

go, and moves to the selected square. Reading the threat 

value at a single square takes constant time, so doing N 

such reads takes O(n) time. Our implemented algorithm for 

randomly selecting one square from N choices with 

different probabilities also takes O(n) time. Finally, 

moving a single queen takes constant time, as discussed in 

Section 4.4 Therefore, an actual turn takes 2O(n) + c = 

O(n) time.  

 For large N, the time to initialize the queen positions 

and the time skipped turns take can be ignored. Therefore, 

Time ≈ (# actual turns)×O(n). The number of actual turns 

cannot be determined analytically since it is a product of 

the emergent behavior of the MAS. Therefore, we must 

look at empirical evidence of Swarm Queens’ performance 

for large N to determine its time complexity. 
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Figure 4: Graph of Time vs. N for Swarm Queens (large N) 

 

 Figure 4 is a graph of time vs. N for data points 

collected by running Swarm Queens on problems from 

Random_Init_Queen_X_Coords() 

Num_Skipped= 0, current_queen= 0 

while(Num_Skipped<N) 

{ 

   if(Threatened(current_queen) = = true) 

   {           

       Random_Weight_move(current_queen) 

       Num_Skipped=0 

    } 

   else 

       Num_Skipped++ 

 

    current_queen= (current_queen+1) % N  

} 



N=10,000 to 70,000. We did not also collect ERA data for 

these larger problems since ERA cannot handle them due 

to its time and memory limits. Each time is an average of 

10 runs. Performing regression analysis on the data points 

yielded the quadratic function  f(x)= 8×10
-7

×x
2 
– 0.0188x + 

170.73  that fits the data with R
2
 value 0.9994. Thus, 

empirical evidence shows that Swarm Queens works in 

approximately O(n
2
)  time. On the other hand, the ERA 

data from Figure 3 suggests a time complexity of O(n
3
) for 

that algorithm. 

 

5.3  Swarm Queens Consistency and Other Results 
 

N 

Time 

(s) 

Time 

SD (s) 

Actual 

Turns 

AT 

SD 

Total 

Turns 

10,000 35.3 0.67 6,362 43 126,002 

20,000 158.1 0.74 13,205 57 364,324 

30,000 349.0 1.49 18,983 70 539,196 

40,000 711.4 2.01 27,759 70 793,557 

50,000 1218.4 6.38 37,816 104 780,715 

60,000 1953.9 7.68 49,994 117 965,031 

70,000 2831.8 13.19 62,530 157 1,126,727 

Figure 5: Swarm Queens data for large N 

 

 Figure 5 lists the times and other data collected from 

the experiments discussed in Section 5.2. The time and 

turn values are averages over the 10 runs. Note the low 

standard deviations of both time and actual number of 

turns, in comparison to their respective average values. On 

the other hand, the average standard deviation for the ERA 

algorithm was equal to 88% of the mean time, which 

implies the times varied wildly from run to run. Compare 

that to the average standard deviation of less than 1% of 

the mean time for the Swarm Queens algorithm. This 

demonstrates the consistency of our algorithm from run to 

run for large values of N.  

 The number of actual turns is much lower than the 

number of total turns, the algorithm taking that much less 

time to run because of the Happy Lazy Principle. Swarm 

Queens was able to find a solution for all problems it was 

given, from N= 4 to N= 70,000. It returns solutions in less 

than 8 milliseconds for N < 100 and takes less than 1 

second to run for problems with N < 1000. 

6  Conclusion 

We have demonstrated that our Swarm Intelligence 

approach to N-Queens produced the fastest, most space 

efficient, and most consistent MAS solution to this 

problem to date. In addition, we have introduced the 

Happy Lazy Principle and utilized Random-Weight moves, 

a concept borrowed from the Ant System. We believe our 

approach is simpler than ERA because it uses just one 

behavior for all agents, and they take turns moving in a 

fixed sequence without making simultaneous actions. In 

fact, we only had to tweak one constant while designing 

our algorithm, which was the exploration vs. exploitation 

value.  

 We have shown that sequential agent movement in 

Multiagent Systems can be more effective than 

simultaneous movement. Furthermore, Swarm Queens is 

consistent from run to run without requiring a complex 

centralized global feedback mechanism for this purpose, as 

suggested by Basharu, Ahriz, and Arana (2003). Thus, our 

experiments prove that non-determinism at the local level 

does not necessarily cause inconsistent global behavior. 

While making a MAS more centralized can improve and 

stabilize its performance (Basharu, Ahriz, & Arana 2003), 

Swarm Queens demonstrates that this can be accomplished 

with changes at the local level only.  

 In the future, it may be possible to solve N-Queens 

with a MAS approach in less than quadratic time. Both 

moving a queen and checking for success take constant 

time in Swarm Queens. Therefore, the performance 

bottleneck is the linear time agents take to decide where to 

go. This time can be reduced by altering Random-Weight 

move so that agents look at only a few of the squares in 

their row to reach a decision. If this change does not cause 

agents to take significantly more actual turns, the resulting 

algorithm will solve N-Queens in sub-quadratic time. To 

reach this goal, future work should focus on designing an 

effective pruning algorithm for picking what squares an 

agent should consider during a Random-Weight move. 

 Ultimately, ERA is a general MAS algorithm that is 

capable of solving not just N-Queens but also other CSPs. 

While our work shows that Swarm Queens is better than 

ERA for the N-Queens problem, more research must be 

done to determine whether our approach can match ERA in 

terms of generality in the constraint satisfaction domain. 

Therefore, we intend to apply the combination of 

sequential movement, Random-Weight moves, and the 

Happy Lazy Principle to other CSP problems. These 

experiments should provide additional information about 

the usefulness of the ideas presented in this paper. 
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