
Swarming the Kingdom: A New Multiagent Systems Approach to

N-Queens

Alex Kutsenok

1
, Victor Kutsenok

2

Department of Computer Science and Engineering

1
, Michigan State University, East Lansing, MI 48825

Email: kutsenok@verizon.net

Department of Mathematics
2
, University of St. Francis, Fort Wayne, IN 46808

Email: vkutsenok@sf.edu

Keywords: swarm intelligence, multiagent systems, and constraint satisfaction

Abstract

This paper introduces Swarm Queens, a Swarm

Intelligence approach to the N-Queens problem. ERA is

the current best Multiagent Systems solution to this

classic Constraint Satisfaction Problem. Our algorithm

improves upon ERA in terms of both time and space

complexity. In addition, Swarm Queens has a simpler

design and delivers much more consistent time

performance from run to run. We discuss the similarities

and differences between these two algorithms, showing

how the design decisions we made led to better

performance. Our experiment demonstrates that

consistent global results can be achieved with non-

deterministic local behavior in Multiagent Systems.

Furthermore, Swarm Queens exhibits features that may

be useful in designing a better general MAS algorithm for

solving Constraint Satisfaction Problems.

1 Introduction

Swarm Intelligence (SI) is a biologically inspired

Multiagent Systems (MAS) technique that involves simple

agents working on small parts of a large problem. Work in

SI began when scientists noticed how intellectually

primitive organisms like ants and bees work together in

colonies to accomplish very complex tasks. Swarm

Intelligence algorithms attempt to solve problems in the

world of computer science by creating teams of simple

agents that are guided by nature-influenced rules. Swarm

agents are only given a local perspective of their

environment and are allowed to work for some time.

Ultimately, a global solution is reached through the

interaction of these agents (Bonabeau, Dorigo, &

Theraulaz 1999). Many other MAS approaches involve

complex agents, direct communication, simultaneous

actions, and even centralized interference with agents as

they work. These features increase the complexity of a

MAS algorithm and are not always necessary to obtain the

best performance. On the other hand, SI attempts to solve

problems by using simple agent designs that are consistent

with the behavior of primitive biological organisms such as

ants.

 We applied SI to the classic Constraint Satisfaction

Problem (CSP), N-Queens, to see if a simpler MAS

approach could compete with existing MAS solutions.

After comparative testing, we found that our SI approach is

better than the leading MAS solution, ERA, in terms of

time complexity, space complexity, and consistency.

Swarm Queens finds a solution to N-Queens in quadratic

time, having just linear space complexity. Furthermore,

Swarm Queens has minimal time deviation from run to run

for problems of the same size.

 In this paper, Section 2 discusses SI and previous

solutions to N-Queens, including ERA. In Section 3, we

explain the rationale behind our MAS synchronization

method and agent design. In Section 4, we describe the

Swarm Queens algorithm in detail. Section 5 discusses

comparative data we collected, the time complexity of

Swarm Queens, and other results. Finally, Section 6

provides a summary and discusses implications for future

work.

2 Background

Swarm Intelligence algorithms have been applied to

various problems since their introduction by Dorigo,

Maniezzo, and Colorni (1991). These applications include

the Traveling Salesman Problem, Quadratic Assignment

Problem, tweaking neural networks, and scheduling. Two

of the most popular SI approaches are the Ant System

(Maniezzo, Gambardella, & De Luigi 2004) and Particle

Swarm Optimization (Kennedy, Eberhart, & Shi 2001).

Other SI approaches exist, though much of SI work

involves applying variants of these two algorithms to

different problems.

 N-Queens is a Constraint Satisfaction Problem that is

solved by finding values for each variable such that every

constraint is satisfied. Specifically, a solution is found by

placing N queens on an N-by-N board such that they do

not threaten each other. Although a fast algorithm has been

found that solves N-Queens in linear time (Sosic & Gu

1994), this problem is still commonly used as a benchmark

for CSP algorithms (Liu, Han, & Tang 2002).

 Han, Liu, and Qingsheng (1999) designed the first

MAS solution to N-Queens, introducing the idea of

viewing queens as agents. These agents are bound to a

single row on the N-by-N board and can move only along

that row. Their approach is quite complex, involving

heterogeneous agents with different behaviors, energy

levels, agent death, and evolution of agent behaviors. This

algorithm was improved upon by another MAS approach

called ERA (Environment, Reactive rules, and Agents).

This approach has homogeneous agents, no agent death or

energy levels, and no evolutionary component. Besides

being much simpler, the ERA algorithm has better

performance than its predecessor (Liu, Han, & Tang 2002).

 ERA works by having queen-agents act simultaneously

to position themselves in their rows. Thus, during a single

ERA round, each of the N queens moves to a square in its

row to reduce the number of threats it receives from the

other queens. The number of threats from all queens at

each square on the N-by-N board is stored in a matrix that

is updated after each move. There are three different

behaviors from which a queen-agent picks randomly when

making an action: least-move, better-move, and random-

move (Liu, Han, & Tang 2002).

 ERA has O(n
2
) space complexity to store the N-by-N

matrix of threats. A single round takes O(n
2
) time and there

can be any number of such rounds as N grows larger.

Memory requirements limited tests to problems of up to

size N= 7000 (Liu, Han, & Tang 2002). ERA is an

inconsistent algorithm, taking very different amounts of

time to run for problems of the same size when initialized

with different random seeds (Basharu, Ahriz, & Arana

2003).

 The ERA framework is general, in that its usefulness is

not restricted to N-Queens. This MAS technique has been

successfully applied to other CSPs like graph coloring and

the Propositional Satisfiability Problem with minimal

changes to the basic algorithm (Liu, Han, & Tang 2002;

Liu, Jin, & Han 2002).

3 Design Decisions and Motivations

3.1 Agent Synchronization: Sequential Movement

Recent MAS literature argues for simultaneous actions by

agents, where agents work in parallel without a turn-based

ordering of when each agent can act (Weyns & Holvoet

2003). The rationale behind this argument is that it is

always best to have as little central control as possible.

However, we suspect that this reasoning does not apply to

all domains where Multiagent Systems are used. In fact,

we believe that many problems, such as N-Queens, can be

more easily solved by a MAS if its agents move

sequentially instead of simultaneously.

 For example, every ERA queen-agent looks at the

current state of the board and picks a place to move to

without knowing how the other agents will move. This

leads to unnecessary conflict when two or more queens

move to squares in the same column because they each saw

that column as unthreatened. These agents ignored better

moves elsewhere because they did not know how the

others would act. Thus, agents working in parallel are at a

disadvantage because they have to make decisions based

on incomplete information.

 Another problem with the parallel actions of ERA

occurs when all but a few queen-agents have found squares

where they are not threatened. In this situation, every

queen (including the ones that have already found an

unthreatened square) is still forced to make a move,

wasting computational time. Finally, MAS algorithms with

sequential moves are simpler and easier to understand

because one can trace the agent actions one at a time as the

problem is being solved.

 Consequently, we chose to implement a simple

sequential ordering for our approach. Each queen-agent in

Swarm Queens is assigned to a row on the N-by-N board,

as in ERA. The queen in row 0 goes first, followed by the

queen in row 1, and so on. When all N Queens have made

a move, the queen in row 0 moves again and the cycle

continues until a solution is found.

3.2 Agent Design: Random-Weight Move

An SI agent should be as simple as possible, so we decided

to have the same single movement behavior for all agents.

For this behavior, we selected the mechanism used by Ant

System agents in the classic Swarm Intelligence approach

to the TSP (Dorigo, Maniezzo, & Colorni 1991). We call

this behavior a Random-Weight move because it involves

making a random decision from among several choices

with different probabilities of being selected.
 In Swarm Queens, a Random-Weight move consists of

a queen choosing a square to move to in its row, where all

N squares have a chance of being selected. Squares with

fewer threats from other queens have a higher probability

of being chosen than those with more threats. This

behavior encourages agents to frequently move to least

threatened squares. However, agents also sometimes make

locally sub-optimal exploration moves to more threatened

squares, which help the MAS escape from local optima.

The specific formula for calculating the probability of

moving to each square we borrowed from Dorigo,

Maniezzo, and Colorni (1991), and it is described in

Section 4.2.
 Because our agents have only one behavior, we did not

have to tweak the probabilities determining how often each

behavior should be selected by an agent, as had to be done

by Liu, Han, and Tang (2002) and Liu, Jin, and Han

(2002). In addition, we thought it was important to

incorporate random local behavior in our approach to test

Basharu, Ahriz, and Arana (2003)’s hypothesis that

randomness in local behavior results in inconsistent global

performance from run to run. Thus, our approach makes

use of randomness, just like ERA, to show that it is

possible to obtain consistent results with a locally non-

deterministic MAS algorithm.

4 The Swarm Queens Algorithm

4.1 The Main Idea is Similar to ERA

As in ERA, we assign an agent to each of the N queens and

place one such queen-agent in every row of the N-by-N

board. Initially, the queens are placed at random squares in

their rows. The queen-agents have a local perspective, in

that they can only look at the squares in their own row

when deciding about where to move. Agents can

communicate indirectly with others by notifying the

squares that they threaten. Thus, each square holds the

number of threats from all the queens that threaten it.

When it is an agent’s turn to move, it looks at all the

squares in its row, and consequently, has some idea about

the positions of other agents. As the agents make moves,

they position themselves such that there are fewer and

fewer queens threatening each other until there are no more

threats (Liu, Han, & Tang 2002).

4.2 The Random-Weight Move

As described in Section 3.1, the queens take turns acting in

a pre-defined sequential order. When it is an agent’s turn, it

can make a Random-Weight move that consists of:

 1) reading the threat values of all N squares in its row

 2) making a random-weighted decision about where to go

 3) going to the selected square

 To decide where to go, agents calculate the probability

of moving to every square in their row. The square an

agent currently occupies is treated exactly like the other N–

1 choices, and a queen can decide to go to this square (i.e.

stay where it is). Just as Ant System agents are more likely

to move to the least distant nodes (Dorigo, Maniezzo, &

Colorni 1991), queen-agents are more likely to move to

squares with the fewest threats. During its turn, an agent

calculates the probability of moving to square j (Pj) for 0 ≤

j ≤ N–1. The formula for calculating Pj is the same one

used by ant-agents, except that queen-agents look at threats

instead of distances and pheromones (the latter is a second

factor Ant System agents have to consider):

∑
−

=

=

1

0)(

1

)(

1

n

i

C

C

iThreats

jThreats
Pj

 The numerator is the “Safety” value that represents

how safe from threats a queen will be at square j. The

number of threats at square j is inverted, since a square

having more threats should result in a lower Safety value.

The denominator is the sum of the Safety values of all the

squares in the agent’s row. Therefore, Pj is a ratio

comparing the Safety of the current square with the

combined Safeties of all squares in that row. The sum of all

Pj for 0 ≤ j ≤ N–1 is always equal to 1. Note that a queen

contributes 1 threat to each square in its row, so the

number of threats at any square is always greater than zero.

 The constant C is the exploration vs. exploitation

constant. Higher values of C correspond to more

exploitation, as agents are more likely to choose squares

that have fewer threats and are Safer. On the other hand,

lowering the value for C results in a higher likelihood of

exploration moves. Exploration moves occur when agents

move to squares that have more threats than others, and

thus, are less Safe. Such moves are necessary to move the

MAS away from local optima. Thus, the formula for

finding Pj ensures that agents make locally sub-optimal

moves to help the algorithm find the global optimal

solution. Empirical testing of different C values for a wide

range of N showed that C between 12 and 20 yield better

results than other values. We set C equal to 16 when

obtaining the data provided in this paper.

4.3 Efficient Storage of Threat Values

It is not necessary to store an entire N-by-N array of threat

numbers to remember the number of threats at each square.

A queen threatens squares in 8 directions that correspond

to 4 “threat lines”: row, column, upper-left diagonal, and

upper-right diagonal. It is wasteful for queens making a

threat to write on every square along those threat lines,

which takes linear time. An improvement can be made by

allowing a queen to inform an entire line that it is being

threatened, not the individual squares that make up that

line. Then, a queen-agent only has to inform the 4 threat

lines passing through the square it is in about being

threatened.
 For example, queen Q1 in square (2, 1) threatens the

2
nd

 column, as shown in Figure 1. It must add 1 to the

number of threats along that column. This can be

accomplished in constant time by incrementing a single

element of an array of columns. Incrementing the number

of threats along a single column has the same effect as

incrementing the number of threats in all the squares of

that column. Q1 also threatens the 1
st
 row and two

diagonals; the number of threats along those threat lines

can be incremented similarly.

Figure 1: Threat Lines from Queen Q1 at (2,1) for a problem of

size N=4. Q1 contributes 1 threat to all the squares through which

its threat lines pass.

 Thus, we store only 4 arrays corresponding to the 4

types of lines passing through the board. This requires

linear storage space, which is an improvement over the

O(n
2
) space complexity of ERA (Liu, Han, & Tang 2002).

Reading and writing threats to lines instead of squares does

not affect how decision-making is done by agents. They

still look at the number of threats at each square in their

row, regardless of how that number is stored.

4.4 Queen Movement

When a queen-agent decides to leave one square to move

to another, all the squares it previously threatened have to

be informed that they are no longer threatened.

Additionally, the squares the queen will threaten from its

new square have to be informed that there is an additional

threat. In Swarm Queens, only the 4 threat lines passing

through the square a queen is leaving have to be informed,

which takes constant time. Similarly, the lines it threatens

from the new square can be informed in constant time.

Therefore, incrementing or decrementing threat values in

all the squares a queen threatens (or used to threaten) takes

constant time. Consequently, moving a queen takes

constant time. This is an improvement over the linear time

ERA takes to move a single queen (Liu, Han, & Tang

2002).

4.5 The Happy Lazy Principle

ERA is a good approximating algorithm (Basharu, Ahriz,

& Arana 2003; Liu, Han, & Tang 2002), which means it

converges quickly to a state where all but a few of the

queens are not threatened by others. However, these

“happy” queens keep making moves, most of the time

resulting in their staying in the same square. These

unnecessary moves take up valuable processing cycles for

the rest of the time the algorithm runs.

 We experimented with the idea of having happy queens

act less frequently since they are satisfied with their

position. Surprisingly, testing showed that a global solution

can be found if happy queens are “lazy” and do not move

at all. We call this the Happy Lazy Principle, which

dictates that happy queens skip their turn. Therefore, only

unhappy queens may move. This principle makes sense

because it is unnatural for agents that are completely

satisfied to want to move somewhere else as long as they

are happy. This does not cause the MAS to become stuck

at local optima because unhappy agents can still indirectly

communicate with happy ones. Specifically, unhappy

queens may threaten the squares of happy queens to force

them to move.

 As a result, we must make a distinction between two

types of turns in Swarm Queens: skipped and actual turns.

A skipped turn occurs when an agent only checks that the

number of threats in its current square is 1 and is done (the

only threat comes from itself). An actual turn occurs when

a queen makes a Random-Weight move after realizing that

it is threatened by one or more other queens. A skipped

turn takes constant time, which is insignificant compared

to the linear time an actual turn takes. For a problem of

size N=1000, Swarm Queens took an average of 14,429

total turns. However, only an average 696 of those turns

were actual turns that took up significant processing time.

This means that the Happy Lazy Principle decreased the

time to find a solution by 20
696

429,14
≈ times for this

problem size. Testing for problems of other sizes yielded

similar gains in performance (see Section 5 for more data).

 Besides making our algorithm faster, the Happy Lazy

Principle is also responsible for making Swarm Queens

significantly more consistent. The standard deviation of the

total number of turns Swarm Queens takes is as high as

60% of the average for some N. This means that the turn

number varies wildly. However, the standard deviation of

the actual number of turns is only 3.30% of the average for

N=1000. This shows that there is little difference in the

number of actual turns from run to run. As N grows larger,

the number of actual turns becomes even more consistent,

with the standard deviation equal to 0.25% of the average

for N=70,000. The time our algorithm takes is directly

related to the number of actual turns, so the running time is

consistent as a result (see Section 5 for data on time

consistency).

4.6 Finding a Solution with Swarm Queens

Swarm Queens does not take O(n) time to check for a

solution like ERA (Liu, Han, & Tang 2002). Instead, a

single variable (Num_Skipped) is kept to record how many

queens have skipped their turn in a row. When

0 1 2

2

1

3

3

Q1

0

Q2

Q0

Q3

Num_Skipped = N, it means that all N queens are happy,

so a solution has been found.
 A high-level view of the Swarm Queens algorithm is

given in Figure 2. Initially, it assigns a queen to each of the

N rows, giving it a random x-coordinate. Then, the

algorithm iterates through all the queens sequentially,

allowing happy queens to skip their turn according to the

Happy Lazy Principle. If a queen is not happy, it always

makes a Random Weight move and resets the

Num_Skipped variable to 0. Checking for a solution takes

constant time, done by comparing Num_Skipped to N.

Figure 2: The Swarm Queens Algorithm

5 Results

5.1 Comparative Testing

0

100

200

300

400

500

600

700

800

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

N

T
im

e
(s

)

ERA Swarm Queens

Figure 3: Graph of Time vs. N for ERA and Swarm Queens

To compare the performance of ERA and Swarm Queens,

we ran both algorithms on the same machine. All of our

tests were conducted on an Intel Pentium III 695Mhz

computer with 128 MB of RAM, running Windows XP.

Figure 3 shows the average times of both algorithms from

100 runs on each problem of size up to N= 7,000. As N

grows, the time ERA takes to run increases much more

rapidly than Swarm Queens’ time. Thus, our approach is a

faster algorithm than ERA.

 As in earlier tests (Basharu, Ahriz, & Arana 2003), the

Standard Deviation (SD) of the ERA runs in our

experiments was quite high. For example, ERA has SD of

709.72s with an average time of 700.72s for N=7000. By

comparison, Swarm Queens had a SD of only 1.30s with

an average time of 16.9s for the same problem size. Swarm

Queens’ SD is a much smaller percentage of its average,

and therefore, it is a more consistent algorithm from run to

run.

5.2 Time Complexity of Swarm Queens

When making a Random-Weight move during an actual

turn, an agent reads the threat values of all N squares in its

row, makes a random-weighted decision about where to

go, and moves to the selected square. Reading the threat

value at a single square takes constant time, so doing N

such reads takes O(n) time. Our implemented algorithm for

randomly selecting one square from N choices with

different probabilities also takes O(n) time. Finally,

moving a single queen takes constant time, as discussed in

Section 4.4 Therefore, an actual turn takes 2O(n) + c =

O(n) time.

 For large N, the time to initialize the queen positions

and the time skipped turns take can be ignored. Therefore,

Time ≈ (# actual turns)×O(n). The number of actual turns

cannot be determined analytically since it is a product of

the emergent behavior of the MAS. Therefore, we must

look at empirical evidence of Swarm Queens’ performance

for large N to determine its time complexity.

0

500

1000

1500

2000

2500

3000

3500

10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000

N

T
im

e
(s

)

Swarm Queens Quadratic Trendline

Figure 4: Graph of Time vs. N for Swarm Queens (large N)

 Figure 4 is a graph of time vs. N for data points

collected by running Swarm Queens on problems from

Random_Init_Queen_X_Coords()

Num_Skipped= 0, current_queen= 0

while(Num_Skipped<N)

{

 if(Threatened(current_queen) = = true)

 {

 Random_Weight_move(current_queen)

 Num_Skipped=0

 }

 else

 Num_Skipped++

 current_queen= (current_queen+1) % N

}

N=10,000 to 70,000. We did not also collect ERA data for

these larger problems since ERA cannot handle them due

to its time and memory limits. Each time is an average of

10 runs. Performing regression analysis on the data points

yielded the quadratic function f(x)= 8×10
-7

×x
2
– 0.0188x +

170.73 that fits the data with R
2
 value 0.9994. Thus,

empirical evidence shows that Swarm Queens works in

approximately O(n
2
) time. On the other hand, the ERA

data from Figure 3 suggests a time complexity of O(n
3
) for

that algorithm.

5.3 Swarm Queens Consistency and Other Results

N

Time

(s)

Time

SD (s)

Actual

Turns

AT

SD

Total

Turns

10,000 35.3 0.67 6,362 43 126,002

20,000 158.1 0.74 13,205 57 364,324

30,000 349.0 1.49 18,983 70 539,196

40,000 711.4 2.01 27,759 70 793,557

50,000 1218.4 6.38 37,816 104 780,715

60,000 1953.9 7.68 49,994 117 965,031

70,000 2831.8 13.19 62,530 157 1,126,727

Figure 5: Swarm Queens data for large N

 Figure 5 lists the times and other data collected from

the experiments discussed in Section 5.2. The time and

turn values are averages over the 10 runs. Note the low

standard deviations of both time and actual number of

turns, in comparison to their respective average values. On

the other hand, the average standard deviation for the ERA

algorithm was equal to 88% of the mean time, which

implies the times varied wildly from run to run. Compare

that to the average standard deviation of less than 1% of

the mean time for the Swarm Queens algorithm. This

demonstrates the consistency of our algorithm from run to

run for large values of N.

 The number of actual turns is much lower than the

number of total turns, the algorithm taking that much less

time to run because of the Happy Lazy Principle. Swarm

Queens was able to find a solution for all problems it was

given, from N= 4 to N= 70,000. It returns solutions in less

than 8 milliseconds for N < 100 and takes less than 1

second to run for problems with N < 1000.

6 Conclusion

We have demonstrated that our Swarm Intelligence

approach to N-Queens produced the fastest, most space

efficient, and most consistent MAS solution to this

problem to date. In addition, we have introduced the

Happy Lazy Principle and utilized Random-Weight moves,

a concept borrowed from the Ant System. We believe our

approach is simpler than ERA because it uses just one

behavior for all agents, and they take turns moving in a

fixed sequence without making simultaneous actions. In

fact, we only had to tweak one constant while designing

our algorithm, which was the exploration vs. exploitation

value.

 We have shown that sequential agent movement in

Multiagent Systems can be more effective than

simultaneous movement. Furthermore, Swarm Queens is

consistent from run to run without requiring a complex

centralized global feedback mechanism for this purpose, as

suggested by Basharu, Ahriz, and Arana (2003). Thus, our

experiments prove that non-determinism at the local level

does not necessarily cause inconsistent global behavior.

While making a MAS more centralized can improve and

stabilize its performance (Basharu, Ahriz, & Arana 2003),

Swarm Queens demonstrates that this can be accomplished

with changes at the local level only.

 In the future, it may be possible to solve N-Queens

with a MAS approach in less than quadratic time. Both

moving a queen and checking for success take constant

time in Swarm Queens. Therefore, the performance

bottleneck is the linear time agents take to decide where to

go. This time can be reduced by altering Random-Weight

move so that agents look at only a few of the squares in

their row to reach a decision. If this change does not cause

agents to take significantly more actual turns, the resulting

algorithm will solve N-Queens in sub-quadratic time. To

reach this goal, future work should focus on designing an

effective pruning algorithm for picking what squares an

agent should consider during a Random-Weight move.

 Ultimately, ERA is a general MAS algorithm that is

capable of solving not just N-Queens but also other CSPs.

While our work shows that Swarm Queens is better than

ERA for the N-Queens problem, more research must be

done to determine whether our approach can match ERA in

terms of generality in the constraint satisfaction domain.

Therefore, we intend to apply the combination of

sequential movement, Random-Weight moves, and the

Happy Lazy Principle to other CSP problems. These

experiments should provide additional information about

the usefulness of the ideas presented in this paper.

References

Basharu, M.; Ahriz, H.; and Arana, I. 2003. Escaping

Local Optima in Multi-Agent Oriented Constraint

Satisfaction. Proceedings of the 23
rd

 SGAI Intern. Conf. on

Innovative Techniques and Apps. of AI.

Bonabeau, E.; Dorigo, M.; and Theraulaz, G. 1999. Swarm

Intelligence: From Natural to Artificial Systems. New

York: Oxford University Press.

Dorigo, M.; Maniezzo, V.; and Colorni, A. 1991. Positive

feedback as a search strategy, Technical Report, 91-016,

Dipartimento di Elettronica, Politecnico di Milano, Italy.

Han J.; Liu J.; and Qingsheng C. 1999. From ALIFE

agents to a kingdom of n-queens. In Liu, J., Zhong, N.,

eds., Intelligent Agent Technology: Systems,

Methodologies, and Tools. The World Scientific

Publishing Co. Pte, Ltd. 110-120.

Kennedy, J.; Eberhart, R. C.; and Shi, Y. 2001. Swarm

Intelligence. San Francisco: Morgan Kaufmann Publishers.

Liu, J.; Han, J.; and Tang, Y. 2002. Multi-agent oriented

constraint satisfaction. Artificial Intelligence 136:101-144.

Liu, J.; Jin, X.; and Han, J. 2002. Distributed Problem

Solving Without Communication. Intern. Journal of

Pattern Recognition and AI 16(8): 1041-1064.

Maniezzo, V.; Gambardella, L. M.; and De Luigi, F. 2004.

Ant Colony Optimization. In Onwubolu, G. C., Babu,

B.V., eds., New Optimization Techniques in Engineering.

Springer-Verlag. 101-117.

Sosic, R., and Gu, J. 1994. Efficient local search with

conflict minimization: A case study of the N-queen

problem. IEEE Transactions on Knowledge and Data

Engineering 6(5):661-668.

Weyns, D., and Holvoet, T. 2003. Model for Situated

Multi-Agent Systems with Regional Synchronization. 10
th

Intern. Conf. on Concurrent Engineering, Agents and

Multi-Agent Systems CE 2003, Balkema Publishers.

